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Abstract—We define a notion of network capacity region of
networks that generalizes the notion of network capacity defined
by Cannons et al. and prove its notable properties such as
closedness, boundedness and convexity when the finite field is
fixed. We show that the network routing capacity region is a
computable rational polytope and provide exact algorithms and
approximation heuristics for computing the region. We define
the semi-network linear coding capacity region, with respect to
a fixed finite field, that inner bounds the corresponding network
linear coding capacity region, show that it is a computable ratio-
nal polytope, and provide exact algorithms and approximation
heuristics. We show connections between computing these regions
and a polytope reconstruction problem and some combinatorial
optimization problems, such as the minimum cost directed Steiner
tree problem. We provide an example to illustrate our results.
The algorithms are not necessarily polynomial-time.

I. INTRODUCTION

In a seminal work in 2000, Ahlswede et al. [1] introduced
the network coding model to the problem of communicating
information in networks. They showed that the extended
capabilities of intermediate nodes to code on incoming packets
give greater information throughput than in the traditional
routing model and that the capacity of any multiple multicast
network with a single source node is equal to the minimum
of min-cuts between the source and receiver nodes.

A few explicit outer bounds of capacity regions of networks
exist; the max-flow/min-cut bounds is one such set of bounds,
which were sufficient in the case of single-source multiple
multicast networks. Harvey et al.[2] combined information
theoretic and graph theoretic techniques to provide a com-
putable outer bound on the network coding capacity regions.
Yan et al.[3] gave an explicit outer bound that improves upon
the max-flow/min-cut bounds and showed its connection to
a minimum cost network coding problem. They used their
results to compute the capacity region of a special class of
3-layer networks. Thakor et al.[4] gave a new computable
outer bound, based on characterizations of all functional
dependencies in networks. Yan et al.[5] provided an exact
characterization of the capacity region for general multi-source
multi-sink networks by bounding the constrained region in the
entropy space. However, they noted that explicitly evaluating
the obtained capacity regions remains difficult in general. In a
related work, Chan and Grant[6] showed that even the explicit
characterization of capacity region for single-source networks

can be difficult since the computation of a capacity region
involves the non-polyhedral set of entropy functions and that
linear programming bounds do not suffice.

The routing capacity region of networks is better understood
via linear programming approaches. Cannons et al.[7] defined
a notion of network routing capacity that is computable with a
linear program and showed that every rational number in (0, 1]
is the routing capacity of some solvable network. Yazdi et
al.[8] and [9] extended a special case of Farkas Lemma called
the “Japanese Theorem” to reduce an infinite set of linear
constraints to a finite set in terms of minimal Steiner trees
and applied the results to obtain the routing capacity region of
undirected ring networks. In a subsequent work, Kakhbod and
Yazdi[10] provided complexity results on the description size
of the inequalities obtained and applied them to the undirected
ring networks.

In this paper, we study the network capacity region of
networks along the lines of work by Cannons et al. [7]. We
define the network capacity region of networks analogously
to the rate regions in information theory and show its notable
properties when the finite field is fixed: closedness, bound-
edness and convexity. In the case of routing, we prove that
the network routing capacity region is a computable rational
polytope and provide exact algorithms and approximation
heuristics for computing the region. In the case of linear
network coding, we define an auxiliary region, called the semi-
network linear coding capacity region, which is a computable
rational polytope that inner bounds the network linear coding
capacity region, and provide exact algorithms and approxima-
tion heuristics, with respect to a fixed finite field. The main
idea is to reduce computation of the capacity regions to a
polytope reconstruction problem and use linear programming
techniques on associated combinatorial optimization problems.
Our results generalize to directed networks with cycles and
undirected networks. This present work partially addresses two
problems proposed by Cannons et al. [7]: whether there exists
efficient algorithms for computing their notions of network
routing capacity and network linear coding capacity. It follows
from our work that there exist combinatorial approximation
algorithms, not polynomial-time, for computing the network
routing capacity and for computing a lower bound of the
network linear coding capacity. In addition, we provide an
example to illustrate our results.



We note that algorithms and heuristics we present are not
polynomial-time schemes. We do not distinguish the vertex
and hyperplane descriptions of polytopes, but note that con-
verting one description into another can be computationally
expensive.

The paper is organized as follows. In Section II, we give a
fractional network coding model. In Section III, we define
the network coding capacity region and prove its notable
properties. In Section IV and V, we prove notable properties of
network coding capacity regions, or inner bounds thereof, in
the case of routing and linear coding and discuss algorithmic
aspects of the regions. In Section VI, we give an example that
illustrates our results. Finally, in Section VII, we discuss fur-
ther extensions and conclude. Due to the page limit, we omit
some details and refer to [11] for more detailed exposition.

II. FRACTIONAL NETWORK CODING MODEL

We define a fractional network coding model. Most defini-
tions are adapted from Cannons et al. [7]. We write vectors
or points in a multi-dimensional space with a hat as in k̂ and
let k̂i (also k̂(i)) denote the i-th coordinate of the vector. We
shall omit the hat when convenient.

A capacitated network N is a finite, directed, acyclic
multigraph given by a 7-tuple (ν, ε, µ, c,A, S,R) where ν is
a node set, ε is an edge set, µ is a message set, c : ε→ Z+ is
an edge capacity function, A is an alphabet, S : ν → 2µ is a
source mapping, and R : ν → 2µ is a receiver mapping.

We define fractional edge function, fractional decoding
function, and fractional message assignment with respect to
a finite field F , where |F | ≥ |A|, a source dimension vector
k̂, and an edge dimension n. Let N = (ν, ε, µ, c,A, S,R) be
a capacitated network and m1, . . . ,m|µ| be the messages. Let
k̂ = (k1, . . . , k|µ|) be a vector of positive integers and n be a
positive integer. For each edge e = (x, y), a fractional edge
function is a map fe : (F ki1 )× · · · × (F kiα )× (Fnc(eα+1))×
· · ·×(Fnc(eα+β))→ Fnc(e). For each node x ∈ ν and message
mj ∈ R(x), a fractional decoding function is a map fx,mj :
(F ki1 )×· · ·×(F kiα )×(Fnc(eα+1))×· · ·×(Fnc(eα+β))→ F kj ,
where mi1 , . . . ,miα are α messages generated by x and
eα+1, . . . , eα+β are β in-edges of x. We denote the collec-
tions of fractional edge and fractional decoding functions by
Fe = {fe : e ∈ ε} and Fx,m = {fx,m : x ∈ ν,m ∈ R(x)}.
Note ki is the source dimension for message mi.

A fractional message assignment is a collection of maps
a = (a1, . . . , a|µ|) where ai is a message assignment for
mi, ai : mi → F ki . A fractional network code on N is
a 5-tuple (F, k̂, n,Fe,Fd) where F is a finite field, with
|F | ≥ |A|, k̂ is a source dimension vector, n is an edge
dimension, Fe is a collection of fractional edge functions, and
Fd is a collection of fractional decoding functions. We have
different classes of fractional network codes corresponding
to Fe and Fd being routing, linear, and nonlinear functions
over the field F : fractional routing/linear/nonlinear network
codes. A fractional network code is a fractional network code
solution if for every fractional message assignment a, we
have fx,mj (ai1(mi1), . . . , aiα(miα), s(eα+1), . . . , s(eα+β))=

aj(mj), for all x ∈ ν and mj ∈ R(x), where mi1 , . . . ,miα

are α messages generated by x and eα+1, . . . , eα+β are β in-
edges of x. If the above equation holds for a particular x ∈ ν
and message m ∈ R(x), then we say node x’s demand m is
satisfied. We have classes of fractional network code solutions:
fractional routing/linear/nonlinear network code solutions.

If (F, k̂, n,Fe,Fd) is a fractional network code solution for
N , source node x ∈ ν sends a vector of ki symbols from F ,
representing alphabets in A, for each message mi ∈ S(x);
each receiver node x ∈ ν demands the original vector of ki
symbols corresponding to mi for each mi ∈ R(x); and each
edge e carries a vector of c(e)n symbols. We refer to coor-
dinates of the symbol vector corresponding to mi as message
mi’s coordinates and coordinates of the symbol vector on edge
e as edge e’s coordinates. Note that a coordinate of edge e can
be active or inactive, depending on whether it actively carries
a symbol in the fractional network code solution or not. A
fractional network code solution is minimal if the set A of
all active coordinates of edges is minimal, i.e., there exists no
fractional network code solution with the same F , k̂ and n
and the set of active coordinates that is a strict subset of A.

In this paper, we consider non-degenerate networks; for
each demand of a message at a node, there is a path from
a source node generating the message to the receiver node
and no message is both generated and demanded by the same
node. We shall abridge network code descriptions and solution
concepts when convenient. In this work, a multicast network
has exactly one message produced by a source node and
demanded by more than one receiver nodes and multi-source
multi-sink networks are the most general network instances.

III. NETWORK CAPACITY REGIONS

A vector of nonnegative numbers
(
k1
n , . . . ,

k|µ|
n

)
∈ Q|µ|+

is an achievable coding rate vector for N if there exists
a fractional network code solution (F, k̂, n,Fe,Fd) where
k̂ = (k1, . . . , k|µ|). The network capacity region of N is
the closure of all achievable coding rate vectors in R|µ|.
There are different classes of network capacity regions: the
network routing capacity region, Cr, which is the closure of
all achievable routing rate vectors; the network linear coding
capacity region, Cl, which is the closure of all achievable linear
coding rate vectors; and the network coding capacity region,
C, which is the closure of all achievable coding rate vectors.

Theorem 1: Let N be a capacitated network and F a fixed
finite field. The corresponding network capacity region C is a
closed, bounded and convex set in R|µ|+ .

Proof: (Closedness) By definition, C is a closed set.
(Boundedness) By symmetry, it suffices to show that k1

n is
bounded in any achievable coding rate vector. Let n be the
edge dimension, ν1 be the set of source nodes in ν that
generate message m1 and γ be the sum of capacities of out-
edges of nodes in ν1. Then, k1 ≤ γn as we cannot send
more than γn independent coordinates of message m1 and
expect receivers to recover all the information. Hence, k1n ≤ γ.
(Convexity) Let x0, x1 ∈ C and λ ∈ [0, 1]. It is straightforward
to show that x = (1 − λ)x0 + λx1 ∈ C by rate sharing; we



use sequences of achievable coding rate vectors converging to
x0 and x1 to produce a sequence of achievable coding rate
vectors converging to x.

Similarly, the routing capacity region Cr and linear coding
capacity region Cl are closed, bounded and convex regions
when the finite field F is fixed. However, the rate-sharing
argument seems to break down in the case of linear coding if
the finite field is not fixed.

IV. NETWORK ROUTING CAPACITY REGIONS

We show the network routing capacity region Cr is the
image of a higher-dimensional rational polytope under an
affine map and consider the computation of Cr as the polytope
reconstruction problem with a ray oracle. Since multi-source
multi-sink networks can be reduced to multiple multicast
networks, it suffices to show the results with respect to the
multiple multicast networks.

A. Properties

Theorem 2: The network routing capacity region Cr is a
bounded rational polytope in R|µ|+ and is computable.

Proof: (Polytope) It suffices to consider minimal frac-
tional routing solutions, which consist of routing messages
along Steiner trees, since any fractional routing solution can
be reduced to a minimal one. Let Ti be the finite set of all
Steiner trees rooted at the source node of message mi and
spanning all receiver nodes that demand mi, and T be the
union, T = T1 ∪ . . . ∪ T|µ|. Then, any minimal fractional
routing solution satisfies the following constraints:∑

T∈T T (e) · x(T ) ≤ c(e)n, ∀e ∈ ε∑
T∈Ti x(T ) = ki, ∀1 ≤ i ≤ |µ|

x ≥ 0,

where x(T ) is the number of times Steiner tree T is used
in the solution and T (e) is an indicator that is 1 if T uses
edge e, or 0 otherwise. After scaling x(T ) by n, any minimal
fractional routing solution satisfies∑

T∈T T (e) · x(T ) ≤ c(e), ∀e ∈ ε
x ≥ 0.

As the coefficients are in Q, the above set of inequali-
ties defines a bounded rational polytope Pr, with rational
extreme points. The polytope is bounded, because edge ca-
pacities are finite and no Steiner tree can be used to route
for infinitely many times. Each minimal fractional routing
solution reduces to a rational point inside the polytope Pr,
and each rational point x inside Pr has a minimal fractional
routing solution (F, k̂, n,Fe,Fd) that reduces to it, such that
ki
n =

∑
T∈Ti x(T ) for all i. It follows that the network routing

capacity region Cr is the image of Pr under the affine map
ψr : (x(T ))T∈T 7→

(∑
T∈T1 x(T ), . . . ,

∑
T∈T|µ| x(T )

)
. It

follows that Cr is a bounded rational polytope.
(Computability) We first compute the vertices v1, . . . , vh of

polytope Pr by any vertex enumeration algorithm. Then we
compute the images of the vertices of Pr under the affine
map ψr. The network routing capacity region is given by the

vertices of the convex hull of points ψr(v1), . . . , ψr(vh) in
R|µ|+ .

B. Algorithms

We now provide exact algorithms and approximation heuris-
tics for computing the network routing capacity region Cr. We
already provided an exact algorithm in the proof of Theorem 2.
Since the polytope Pr is defined in a high-dimensional space,
the exact algorithm may not be efficient in practice. Using
results in [12] and [13] on polytope reconstruction problems,
we derive different kinds of algorithms that might be more
efficient.

In our polytope reconstruction problem, we compute the
facet description of a given polytope by making calls to the
ray oracle ORay which, given a ray, returns the intersection
point on the polytope surface and the ray. We reduce the
computation of Cr to the polytope reconstruction problem by
1) reflecting Cr around the origin to get a symmetric polytope
Q that contains the origin in its interior and 2) solving the
linear programs similar to the one in Cannons et al. [7] to
implement the ray oracle ORay . To reflect Cr, we map all
calls to the ray oracle to equivalent calls with rays defined in
R|µ|+ . We use the algorithm outlined in Section 5 of Gritzmann
et al. [13] to compute all the facets of the resulting polytope
Q and, therefore, Cr. The main idea of the algorithm is to first
find a polytope Q′ that contains Q and whose facet-defining
hyperplanes are a subset of those for Q (Theorem 5.3 in [13]),
and then successively add more facet-defining hyperplanes of
Q to Q′ by using ORay . By Theorem 5.5 in Gritzmann et
al. [13] and the symmetries around the origin, we need at most
f0(Cr)+(|µ|−1)f2

|µ|−1(Cr)+(5|µ|−4)f|µ|−1(Cr) calls to the
ray oracle where fi(Cr) denotes the number of i-dimensional
faces of Cr that do not contain the origin (the 0-th dimensional
faces being the points).

If we use an exact algorithm for the ray oracle ORay , we
get an exact hyperplane description of the network routing
capacity region. If instead we use an approximation algorithm
that computes some point r such that the actual intersection
point lies between r and Ar, then we obtain an approxima-
tion heuristic that computes a set of points r such that the
boundary of Cr lies between points r and Ar. We note that
an approximation algorithm for ORay does not necessary yield
an approximation algorithm for Cr, where an A-approximation
of Cr would be a polytope P such that P ⊂ Cr ⊂ AP .
While an approximation algorithm for the oracle ORay does
not necessarily lead to a polytope description of Cr, it might
be faster and more efficient than exact algorithms and, hence,
more applicable to compute a quick “sketch” of Cr. For
instance, we can find approximate intersection points on a
sufficiently large number of rays evenly spread apart.

C. Implementations of Oracle ORay
Given the hyperplane description of the polytope Pr and a

ray with a rational slope, x̂ = q̂t, t ≥ 0, we want to compute
the rational intersection point of the ray and the boundary of



Cr. Note that the intersection point is exactly λmaxq̂ where
λmax is the optimal value to the linear program

max λ
s. t.

∑
T∈T T (e) · x(T ) ≤ c(e), ∀e ∈ ε∑
T∈Ti x(T ) ≥ λqi, ∀i

x, λ ≥ 0.

(IV.1)

We can use any linear programming algorithm, such as
the ellipsoid algorithm, to solve the linear program exactly
and, thus, obtain an exact oracle ORay . For the approximate
ray oracles, we can employ algorithms that solve the linear
program within a provable approximation guarantee. Note
that as the network routing capacity region Cr is a rational
polytope, it suffices to consider rays with a rational slope.

Using the results for the multicommodity flow and related
problems by Garg and Könemann [14], we can derive a
combinatorial approximation algorithm that solves the linear
program (IV.1). It computes a point r̂ such that λmaxq̂ is
on the line segment between r̂ and (1 + ω)Ar̂ for some
numbers ω > 0 and A ≥ 1. The main idea is to view
solving (IV.1) as concurrently packing Steiner trees according
to the ratio defined by q̂ and use the results for the minimum
cost directed Steiner tree problem: given an acyclic directed
multigraph G = (ν, ε), a length function l : ε → R+, a
source node s and receiver nodes n1, . . . , nk, find a minimum
cost (defined by

∑
e∈ε′ l(e)) subset of edges ε′ such that

there is a directed path from s to each ni in ε′. We assume
we have an oracle ODSteiner that solves the minimum cost
directed Steiner tree problem, which is well-known to be NP-
hard, within an approximation guarantee A. Then we have the
following theorem:

Theorem 3: There exists an (1 + ω)A-approximation algo-
rithm for the linear program (IV.1) in time O(ω−2 (|µ| logA|µ|
+|ε|)A log |ε| · TDSteiner), where TDSteiner is the time re-
quired to solve the minimum cost directed Steiner tree problem
with oracle ODSteiner within an approximation guarantee A.

Note that computing the network routing capacity region is
not the same as the multicommodity flow, as in our problem,
a message can be demanded by multiple nodes and can
be duplicated at intermediate nodes. There are algorithms
for ODSteiner; the approximation using shortest paths yields
A = O(|ν|) in time O((|ν|2 + |ν||ε|) log |ν|) and Charikar et
al. [15] gives a set of algorithms with A = i(i − 1)|ν|1/i
and time O(|ν|3i) for any integer i > 1. We can also
use any brute-force algorithm that yields A = 1. Note that
further improvements in the minimum cost directed Steiner
tree problem translates to improvements to our approximation
algorithm by above theorem.

V. NETWORK LINEAR CODING CAPACITY REGIONS

We define a computable polytope C′l , which we call the
semi-network linear coding capacity region, that is contained
in the network linear coding capacity region Cl. It is unknown
how good of an approximation the polytope C′l is to Cl.
Unlike in the last section, the finite field is important in
the computation of C′l because of linearity of functions and

termination of algorithms. In this section, we assume that a
network N is a multi-source multi-sink network and that the
finite field F is fixed.

A. Definitions

The weight vectors associated with N are vectors w in
{0, 1}|µ| such that there exists a scalar-linear network code
solution when only messages mi with wi = 1 are considered
and all the edges are assumed to be of unit capacity. We refer
to the scalar-linear network code solutions corresponding to
these weight vectors as partial scalar-linear network code
solutions. A fractional network code is a simple fractional
linear network code solution if the fractional network code
is linear over the finite field F and can be written as an
aggregate of partial scalar-linear solutions (when considered
with unit edge capacities). We define the semi-network linear
coding capacity region C′l of N as the closure of all coding
rate vectors achievable by simple fractional linear network
code solutions. Clearly, the network linear coding capacity
region Cl contains the semi-network linear coding capacity
region C′l . Note that scalar-linear network code solution and
simple fractional linear network code solution are two different
solution concepts.

B. Results

By the same line of reasoning as in the case of routing, we
get the following theorems.

Theorem 4: Assume a finite field F is given. The semi-
network linear coding capacity region C′l , with respect to F ,
is a bounded rational polytope in R|µ|+ and is computable.

Instead of the minimum cost directed Steiner tree problem,
we have two associated problems: minimum cost scalar-linear
network code problem where given a network with unit edge
capacities, a finite field F , and a length function l : ε→ R+,
we want to compute the minimum cost (defined to be the
sum of lengths of the edges used) scalar-linear network code
solution; and fractional covering with box constraints problem
which is to solve

min
∑m
j=1 c(j)x(j)

s. t.
∑
j A(i, j)x(j) ≥ b(i), ∀1 ≤ i ≤ n

x(j) ≤ u(j), ∀1 ≤ j ≤ m
x ≥ 0,

where A is an n × m nonnegative integer matrix, b a non-
negative vector, c a positive vector, and u a nonnegative
integer vector. Assuming we have two oracles, OSLinear and
TFCover, for these problems, we get:

Theorem 5: There exists an (1 + ω)B-approximation algo-
rithm for oracle ORay , for C′l , with time O(ω−2(logA|µ| +
|ε|)B log |ε| · (TFCover + k′TSLinear)), where TFCover is the
time required to solve the fractional covering problem by
OFCover within an approximation guarantee B, TSLinear is
the time required to solve the minimum cost scalar-linear
network code problem exactly by OSLinear, and k′ is the total
number of weight vectors associated with N .
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Fig. 1. Network N and its network routing capacity region and semi-
network linear capacity region, each computed with an exact ORay and an
approximate ORay .

For OFCover, we can use any linear programming al-
gorithm or the combinatorial approximation algorithm by
Fleischer [16]. For OSLinear, there is a dynamic programming
algorithm in [11]. Without the minimum cost condition, the
scalar-linear network code problem reduces to the decidability
problem of determining whether or not a network has a scalar-
linear solution, which is NP-hard [17]. Without the fixed finite
field F , the decidability of the problem is unknown; this
justifies in part our assumption of the fixed finite field F .

VI. AN EXAMPLE

For network N , we computed the network routing capacity
region (two inner curves) and the semi-network linear coding
capacity region (two outer curves) with both exact and ap-
proximate ray oracles in Figure 1. Network N has two source
nodes at the top and two receiver nodes at the bottom. For
exact ray oracles, we hard-coded the corresponding linear pro-
grams and used a linear program solver, linprog, in MATLAB.
To obtain approximate intersections points, we simply used
an approximate oracle ORay in place of the linear program
solver in an implementation of a 2D-polytope reconstruction
algorithm. We note that the approximate oracle ORay worked
well in this example and led to its successful termination, but
this may not hold for arbitrary networks in general.

VII. FURTHER DISCUSSION

Our results have a few extensions: We can design mem-
bership testing algorithms that given a rate vector, determines
whether or not there exists a fractional network code solution
that achieves the rates from algorithms we have provided, for
the network routing capacity region and semi-network linear
coding capacity region. We can also generalize the results
to directed networks with cycles and undirected networks
straightforwardly.

Note that the network routing capacity defined by Cannons
et al.[7] corresponds to a point on the boundary of polytope Cr;
it is exactly the intersection point between the (outer) boundary
of Cr and the ray x̂ = (1, . . . , 1)t, t ≥ 0. Hence, our work
partially addresses two problems proposed by Cannons et al.:
whether there exists efficient algorithms for computing their

notions of network routing capacity and network linear coding
capacity. It follows from our work that there exist combinato-
rial approximation algorithms, albeit not polynomial-time, for
computing the network routing capacity and for computing a
lower bound of the network linear coding capacity.

For details omitted in this paper, we refer to [11].
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